WINZENHÖLER GmbH & Co. KG

Einsatzbeispiele von BZ-Omnibussen im Werkbusverkehr

WINZENHOLER GmbH & Co. KG

Der Industriepark Höchst

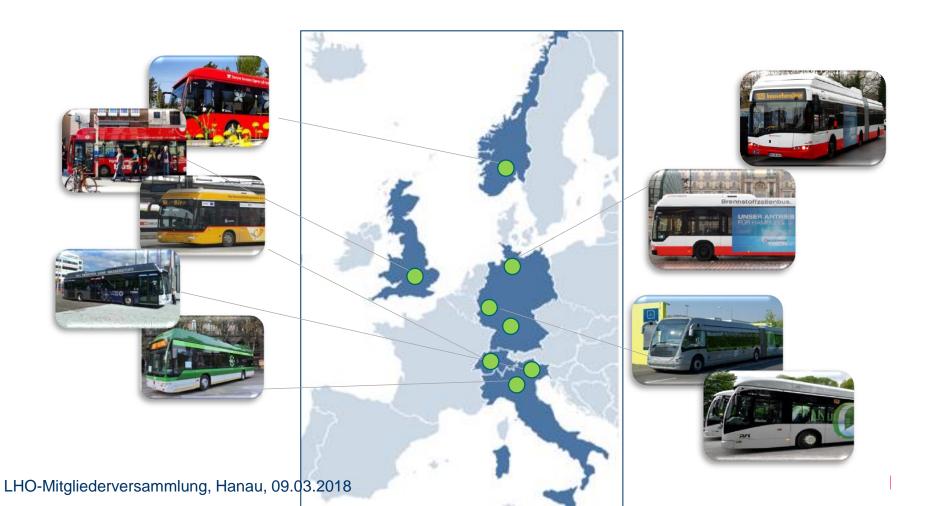
Bildquelle: Infraserv Höchst

- In den 90iger Jahren Transformation der Höchst AG in ein lebendiges Cluster aus über 90 Unternehmen
- Rund 5 qkm Chemie- und Pharmainfrastruktur mit mehr als 22.000 Beschäftigten
- Enges Netzwerk von Unternehmen
- "Verbundstruktur" Energie und Entsorgung
- Ansatz "waste to energy" Nutzung von Nebenprodukten der Chemie als Vor- und Zusatzprodukte in chemischen Prozessen

Nebenprodukt Wasserstoff im Industriepark Höchst

- Wasserstoff ist ein Nebenprodukt, das bei der Chlorproduktion im Industriepark Höchst anfällt
- Wasserstoff ist Ausgangsstoff für viele chemischen Prozesse im Industriepark Höchst
- Ein Teil des Wasserstoffs wird in Gasflaschen und Trailer für externe Kunden abgefüllt. Ein weiterer Teil wird thermisch verwertet
- Infraserv Höchst betreibt im Süden des Industriepark Höchst eine Abfülleinrichtung für Straßenfahrzeuge / Trailer für Wasserstoff

Wasserstoffinfrastruktur im Industriepark Höchst


- Im Industriepark Höchst werden Wasserstoffnetze unterschiedlicher Druckstufen (von 70 mbar bis 1.000 bar) betrieben
- Eine wichtige Versorgungsleitung bildet die Anbindung einer öffentlichen Tankstelle an das Wasserstoffnetz
- An dieser Tankstelle wird Wasserstoff mit unterschiedlichen Druckstufen bereitgestellt

Bisherige H2 – Projekte in Europa

Vorgehensweise Beschaffung BZ-Omnibusse

- Winzenhöler hat einen Antrag auf Forschungsförderung zwecks Untersuchung des Einsatzes von BZ – Omnibussen gestellt.
- Es sollen die nicht-technischen Einflußfaktoren (Teileverfügbarkeit, Schulungen Personal) auf die Verfügbarkeit untersucht werden.
- Um den Forschungsauftrag des Bundes zu erfüllen hat Winzenhöler BZ – Omnibusse gebraucht beschafft (Geplant war ein gefördertes Neufahrzeug)
- Dauer des Projekts: insgesamt 24 Monate
- Einsatz der Fahrzeuge und Projektbeginn: 01-04-2017

Nicht – technische Faktoren als Schlüssel zum Projekterfolg

- **Busfahrer:** Erklärung der neuen Technologie und des Tankvorgangs, Verhalten bei Notfallsituationen und Betriebsstörungen
- Instandhaltungspersonal: Erklärung des BZ-Hybrid-Antriebes, des Wasserstoff-Systems und der Hochvolt-Anlagen
- Lagerhaltung: Bevorratung von Verschleißteilen bzw. "overnight" Verfügbarkeit
- Rettungsdienste/Feuerwehr: Gefährdungsabschätzung und Handhabung von gefährlichen Systemen

Bisherige Erkenntnisse zeigen, dass BZ – Omnibusse das Potential haben, konventionell angetriebene Omnibusse zu ersetzen Steigerung der Fahrzeugverfügbarkeit auf über >85%

Wasserstoffbus im Industriepark Höchst

- Einsatz von BZ Omnibussen im Industriepark Höchst
- Der Industriepark Höchst bietet hierfür ideale Rahmenbedingungen
 - Verkehrsgebiet übersichtlich und klar abgegrenzt
 - Infrastruktur wie Tankstelle / Werkstatt vorhanden
- Schaffung einer Redundanzlösung als Betankungssicherheit
- Verfügbarkeit der Ersatzteile -> Wartungsvertrag

Strategische Bedeutung von Wasserstoff

- Wasserstoff ist der Energieträger der Energiewende und kann Speicheraufgaben erfüllen
- Wasserstoff kann als Energieträger für mobile Anwendungen in Schienenfahrzeugen, Bussen (ÖPNV) und im Industrieverkehr (LKWs und PKWs) eingesetzt werden
- Die Umstellung von Diesel auf Wasserstoff ist ohne erheblichen Aufwand machbar
- Mit dem Betrieb eines H₂-BZ Omnibusses im Industriepark Höchst werden die Weichen für einen emissionsfreien Personennahverkehr in Hessen gestellt

WINZENHOLER GmbH & Co. KG

Technische Daten des BZ **Omnibusses**

Brennstoffzelle ???

Radnabenmotoren Integriert in ZF-Portalachse AVE 130

Dauerleistung: 4 x 60 kW

Stundenleistung: 4 x 80 kW Minutenleistung: 4 x 120 kW

Gesamt-Dauerleistung: 240 kW

 $v_{max} = 80 \text{ km/h}$

DAIMLER

Abbildung 2: Seitenansicht rechts

Abbildung 3: Seitenansicht links

Batterien

Generator

Lithium-Ionen Batterie

Kapazität (Energie-Inhalt): 26 kWh

Kurzzeitige Leistung (10 sec): 258 kW

Nennspannung: 650 V

416 Zellen

Permanent-Synchronmotor

160 kW bei 2.200 U/min

Gewicht ca. 180 kg

Abbildung 4: Frontansicht

Abbildung 5: Heckansicht

Technische Daten des BZ Omnibusses

Hauptabmessungen

Fahrzeuglänge	11.950 mm
Fahrzeugbreite	2.550 mm
Fahrzeughöhe inkl. Dachaufbauten	3.419 mm
Wendekreis	21.030 mm
Radstand	5.845 mm
Spurweite Vorderachse	2.113 mm
Spurweite Antriebsachse	1.834 mm
Überhang vorne	2.705 mm
Überhang hinten	3.400 mm
Böschungswinkel vorne	7°
Böschungswinkel hinten	7°
Reifengröße	275/70 R 22,5
Beförderungskapazität (nach Zulassung 2001/85/EG Klasse 1)	1/77
Sitzplätze	27
Stehplätze	50

WINZENHOLER GmbH & Co. KG

Warum E-Busse im Linienverkehr?

Elektrobusse im ÖPNV

eCoach Beratung-allgemein

Land Hessen, HA Hessen Agentur GmbH

- Fünftägige Initialberatung
- Für Aufgabenträger, lokale Nahverkehrsorganisationen, Verkehrsunternehmen
- ➤ Thema: Einstieg in den E-ÖPNV
- > Ansprechpartner: HA Hessen Agentur GmbH

Vielen Dank für Ihre Aufmerksamkeit!

